Research interests
Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. The main aim of my research is to elucidate precisely the computational principles underlying higher brain functions and their breakdown in brain diseases. My research allows us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We integrate different levels of experimental investigation in cognitive neuroscience (from the operation of single neurons and neuroanatomy, neurophysiology, neuroimaging and neuropsychology to behaviour) via a unifying theoretical framework that captures the neural dynamics inherent in the computation of cognitive processes.
Selected publications
Martínez-Molina N, Escrichs A, Sanz-Perl Y, Sihvonen AJ, Särkämö T, Kringelbach ML, Deco G 2024, '- The evolution of whole-brain turbulent dynamics during recovery from traumatic brain injury', Network neuroscience, 8 - 1 - 158 - 177 - .